

Objective:

To develop a method for the detection of CBD and CBG using LC-MS.

Introduction

- Cannabidiol (CBD) and Cannabigerol (CBG) are two cannabinoids • found in cannabis.
- CBD is usually sold as an oil and has certain medicinal properties and no psychoactive components.
- Some medicinal properties include:
 - Antioxidative
 - Anti-inflammatory
- CBG is known to be neuroprotective
- CBG can help with Parkinson's, Alzheimer's, and Neuropathy.
- CBG is the decarboxylated form of Cannabigerol acid (CBGA). \bullet
- CBGA is the parent molecule from which other cannabinoids are synthesized and often referred to as the "mother of all cannabinoids"

Cannabigerol $C_{21}H_{32}O_2$ (316.5 amu)

Figure 1. Structures of CBD and CBG drawn using ChemDoodle.

Figure 2. Agilent 1200 Series 6530 Accurate-Mass Q-TOF LC/MS.

Method

Column:	Poroshell 120 EC-C18, 3
	mm, 2.7 mm (Agilent)
Column	30 °C
Temperature:	
Flow rate:	0.3 mL/min
80% Mobile	0.1% formic acid in wat
phase A:	
20% Mobile	0.1% formic acid in
phase B:	acetonitrile
Mode of	ESI +
Ionization	
Mass Range	100-500 m/z
Table 1. Agilent LCMS-QTOF parameters.	

References

The most common cannabinoids and their conversion pathway by... | Download Scientific Diagram. ttps://www.researchgate.net/figure/The-most-common-cannabinoids-and--pathway-by-decarboxylation-because-of fig1 346162786 (accessed 2024-03-18). Callahan, L. Understanding the Difference Between CBD vs THC | THC vs CBD. San Antonio Recovery Center. ntoniorecoverycenter.com/rehab-blog/cbd-vsthc/ (accessed 2024-03-18)

Fraguas-Sánchez, A. I.; Fernández-Carballido, A.; Martin-Sabroso, C.; Torres-Suárez, A. I. Stability Characteristics of Cannabidiol for the Design of Pharmacological, Biochemical and Pharmaceutical Studies. Journal of Chromatography B 2020, 1150, 122188. https://doi.org/10.1016/j.jchromb.2020.122188

Detection of Cannabidiol and Cannabigerol by LC-MS for Kinetic Studies

<u>Gursevak Uppal</u>, Carla Figueroa, Dr. Kingsley Donkor

Department of Chemistry, Thompson Rivers University, Kamloops, BC

Conclusion and Future Directions

- > CBD and CBG standards ranging from 5 ppm to 25 ppm were able to be detected individually.
- > CBD and CBG were able to be detected in a sample containing both compounds. > The method was optimized to yield sharp peaks.

Future Directions

- Test the stability of CBG in different conditions.
- Test the kinetics of conversion of CBG to Δ 9-Tetrahydrocannabinol (THC).
- Optimize the method for the separation of the CBD and CBG peaks.

- I would like to thank Dr. Kingsley Donkor for his guidance and support. I would also like to thank Carla Figueroa for her help with this project, Western Diversification Canada for the purchase of the LC-MS, and TRU Department of Chemistry for resources.

Acknowledgments